Single-Neutron Levels Near the N=82 Shell Closure

Brett Manning

Rutgers University

August 14, 2012

One neutron from ¹³²Sn

Recent experiments at the Holifield Radioactive Ion Beam Facility (HRIBF)

- ▶ K.L. Jones et al. studied ¹³³Sn via ¹³²Sn(d,p) was published in Phys. Rev. C and Nature; featured on the cover of Physics Today
- ▶ R.L. Kozub et al. studied ¹³¹Sn via ¹³⁰Sn(d,p) and recently submitted the results for publication

132 Sn(d,p)

Q-value Spectrum for ¹³²Sn(d,p) in Inverse Kinematics

- Validated ¹³²Sn as a doubly-magic nucleus
- Spectroscopic factors near 1.0 indicated the states in ¹³³Sn are pure single-particle

$E_{\rm x}$ (keV)	J^π	Configuration
0	7/2-	2f _{7/2}
854	3/2-	3p _{3/2}
1363	$(1/2^{-})$	(3p _{1/2})
2005	$(5/2^{-})$	$(2f_{5/2})$

130 Sn(d,p)

Q-value Spectrum for 130 Sn(d,p) in Inverse Kinematics

- ► Q-value spectrum overlapped very nearly with the results from ¹³²Sn(d,p)
- ► Spectroscopic factors for ¹³¹Sn were between 0.7 1.0
 - ► Indicates the states in ¹³¹Sn are largely single-particle

$E_{\rm x}$ (keV)	J^{π}	Configuration
2628	7/2-	2f _{7/2}
3404	3/2-	3p _{3/2}
3986	1/2-	3p _{1/2}
4655	5/2-	2f _{5/2}

R.L. Kozub et al., submitted for pulication.

Back to Stability with ¹²⁴Sn

Q-value Spectrum for 124 Sn(d,p) in Inverse Kinematics

- K.L. Jones et al. studied states in 125Sn through the (d,p) reaction in inverse kinematics using silicon detectors
- ▶ I. Tomandl et al. studied states in 125 Sn through both the (n,γ) reaction and the (d,p) reaction in normal kinematics with the Q3D magnetic spectrograph
 - Measured greater than 400 states in ¹²⁵Sn
 - Since ¹²⁴Sn is stable it allows for normal kinematics, this is not true for higher mass Sn isotopes

Reminder: What has been studied

- ► ¹³³Sn is one neutron <u>above</u> the double shell closure at Z=50 and N=82
 - ▶ ¹³³Sn has been verified to contain nearly pure single-particle states through ¹³²Sn(d,p) in inverse kinematics
- ▶ ¹³¹Sn is one neutron <u>below</u> the double shell closure at Z=50 and N=82
 - ▶ ¹³⁰Sn(d,p) in inverse kinematics has been shown to populate highly single-particle states
- ▶ ¹2⁴Sn is stable and therefore normal kinematics experiments are possible
 - ► States in ¹²⁵Sn have been studied through ¹²⁴Sn(d,p) in both inverse and normal kinematics as well as ¹²⁴Sn(n,γ)

Comparison of the proposed $f_{7/2}$ state

Reaction	E_{x} (keV)	J^{π}	Spectroscopic Factor
¹³² Sn(d,p) [1]	0	7/2-	1.00±0.08
¹²⁴ Sn(d,p) [2]	2754.8	7/2-	0.30

- [1] K.L. Jones et al., Phys. Rev. C 84, 034601 (2011).
- [2] I. Tomandl et al., Phys. Rev. C 83, 044326 (2011).

The Big Question: How do these States Evolve Between the Double Shell Closure and Stability?

$1I_{13/2}$	
1h _{9/2}	
2f _{5/2} -	
3p _{1/2}	
$3p_{3/2}$	
2f _{7/2}	-
	82
1h _{11/2}	
2d _{3/2} :	
$3s_{1/2}$	
2d _{5/2}	-
1g _{7/2}	

- Energy levels and fragmentation for single-particle states in ^{127,129}Sn will help constrain theoretical structure model parameters
- Better model parameters will increase the predictive power of such models for neighboring nuclei

Radioactive Ion Beams at HRIBF

- Proton beam impinged upon uranium carbide (UC_x) target
- Sulfur gas in the Ion Source bonded with tin-ions exiting the UC_x target to aid in beam purification
- Mass Analyzer selected for tin-sulfide (SnS) molecules with A=A_S+A_{Sn}

➤ SnS molecules broken up in Charge Exchange Cell producing negative-ions accelerated to 630 MeV in the 25-MV Tandem

http://www.phy.ornl.gov/hribf/accelerators/ 🔗 🤉

(d,p) Reaction in Inverse Kinematics

- RIB impinged upon 242 μg/cm² CD₂ target
 - ▶ $E_{Beam} \approx 5 \text{ MeV/u}$
 - ▶ 100,000 pps for 126 Sn (\approx 1 day)
 - ▶ 35,000 pps for 128 Sn (\approx 4 days)
- ▶ In the lab frame:
 - Protons, deuterons, and carbon in the target are elastically scattered forward of 90°
 - Lowest energy reaction protons will be ejected backward of 90°

Detectors

- ► An ionization chamber was placed at 0°
- ▶ 2 silicon strip detectors (SuperORRUBA) covered lab angles from 55°-90°
- ▶ 6 silicon strip detectors (SuperORRUBA) covered lab angles from 90°-125°
- ▶ 6 annular silicon strip detectors (SIDAR) covered lab angles from 125°-160°
- ► See S. Ahn's poster for more details on SuperORRUBA

SIDAR detectors in

Ring of SuperORRUBA detectors

Preliminary results look very similar to previous work in this area!

¹²⁴Sn(d,p) in Inverse Kinematics

Preliminary results look very similar to previous work in this area!

Q-value Spectrum for ¹²⁸Sn(d,p) in Inverse Kinematics

- ► States below the N=82 shell closure are weakly populated
- ➤ 3 states above the the N=82 shell closure
- Similar to
 Q-value
 spectrum for
 neighboring
 nuclei

Q-value Spectrum for ¹²⁶Sn(d,p) in Inverse Kinematics

- ➤ States below the N=82 shell closure are weakly populated
- ➤ 3 or more states above the the N=82 shell closure
- Short run time leads to low statistics

Particle-Gamma Coincidences

- ▶ D.C. Radford and coupled A. Galindo-Uribarri CLARION (Ge-clovers) and HyBall (Csl)
 - ▶ Useful for many techniques including (9 Be, 8 Be γ)
- See J.M. Allmond's talk from 4:45pm-5:05pm later today for more detector details

Outlook

- Preliminary anlysis indicates we observe the same f and p-states studied in previous experiments
- ► Gamma-ray data from $({}^{9}\text{Be}, {}^{8}\text{Be}\ \gamma)$ reaction will provide high resolution energy centroids
- Plans to verify transfered angular momentum and extract spectroscopic factors
- ► Discussions with structure theorist Shi-Sheng Zhang

Acknowledgements

Special thanks to $\underline{\mathsf{Dan}}$ Stracener and $\underline{\mathsf{Carl}}$ Gross for their beam development expertise.

```
J.A. Cizewski<sup>1</sup>, R.L. Kozub<sup>2</sup>, S.H. Ahn<sup>3</sup>, J.M. Allmond<sup>4</sup>, D.W. Bardayan<sup>5</sup>, J.R. Beene<sup>5</sup>, K.Y. Chae<sup>5</sup>, K.A. Chipps<sup>6</sup>, A. Galindo-Uribarri<sup>3,5</sup>, M.E. Howard<sup>1</sup>, K.L. Jones<sup>3</sup>, J.F. Liang<sup>5</sup>, M. Matos<sup>7</sup>, C.D. Nesaraja<sup>5</sup>, P.D. O'Malley<sup>1</sup>, S.D. Pain<sup>5</sup>, E. Padilla-Rodal<sup>8</sup>, W.A. Peters<sup>9</sup>, S.T. Pittman<sup>5</sup>, D.C. Radford<sup>5</sup>, A. Ratkiewicz<sup>1</sup>, K.T. Schmitt<sup>5</sup>, D. Shapira<sup>5</sup>, M.S. Smith<sup>5</sup>
```

¹ Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854

Department of Physics, Tennessee Technological University, Cookeville, TN 38505

³ Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996

⁴ JIHIR, Oak Ridge National Laboratory, Oak Ridge, TN 37831

⁵ Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831

⁶ Physics Department, Colorado School of Mines, Golden, CO 80401

Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803

⁸ Instituto de Ciencias Nucleares, UNAM, AP 70-543, 04510 México, D.F., México

Oak Ridge Associated Universities, Oak Ridge, TN 37830